The Technical and Aesthetic Dimensions of Additive Manufacturing Technology in The Field of Ceramics

  • Dr. Nahed bint Mohammed Musa Turkistani Assistant Professor of Ceramics, College of Design and Arts, University of Jeddah, Saudi Arabia
Keywords: Technical Dimensions, Aesthetic Dimensions, Additive Manufacturing Technology, Ceramics

Abstract

The research aimed to identify the intellectual foundations of additive manufacturing technology. And learning about the intellectual foundations of the technical and aesthetic dimensions of additive manufacturing technology in the field of ceramics. The research used the descriptive method. The research reached many results, the most important of which are: enhancing additive manufacturing (AM) techniques in the field of ceramics, a multidisciplinary approach between artists and technicians to support their integration into the creative process in the field of ceramics; Additive manufacturing (AM) techniques in the field of ceramics save a lot of time and effort from the design stages all the way to the final model, as well as a creative environment for artists, professionals, and art enthusiasts. Additive manufacturing (AM) techniques in ceramics allow for greater commitment, motivation, engagement and access to higher levels of artistic creativity; Additive manufacturing (AM) techniques in ceramics will help cover a large number and full range of questions on how to integrate and employ them; Additive manufacturing (AM) techniques in ceramics provide a great deal of flexibility in implementing designs that would otherwise be difficult to implement with traditional molding techniques. Additive manufacturing (AM) techniques in ceramics greatly advance design possibilities rather than considering the limitations of ceramic design. Based on its results, the research recommended benefiting from studying additive manufacturing (AM) techniques in the field of ceramics and applying them as new trends in the creative process in the field of ceramics. Working to spread awareness of Additive Manufacturing (AM) techniques in the field of ceramics academically and artistically in museums and art studios to inspire and empower critical and creative thinking; Encouraging action research projects conducted by art scholars, enthusiasts and artists to investigate the integration of ceramics and art and collaboration across subject areas.

References

1. أحمد، رشا فوزي. (2023). أثر الملدنات "المولاس" والمواد الرابطة "الصمغ العربي" على فاعلية الطباعة الخزفية ثلاثية الأبعاد لطينة السيل (الحِيبة) بمحافظة قنا. المجلة العلمية لعلوم التربية النوعية، ، مج. 18، ع.18, 44-73. doi: https://doi.org/10.21608/sjsep.2023.329190
2. أحمد، رشا فوزي. وسليمان ، ابراهيم دسوقي عبد الموجود. (2023). دراسة تطبيقية لتصميم وتنفيذ طابعة خزفية ثلاثية الأبعاد. مجلة جامعة جنوب الوادي الدولية للعلوم التربوية، مج. 6، ع. 11، 211-250. doi: https://doi.org/10.21608/musi.2023.330547
3. رشوان، نهلة محمد حامد. (2020). استراتيجية لتطوير الخامات في تكنولوجيا تصميم وتصنيع الخزف بالإضافة. اطروحة دكتوراة. مصر: كلية الفنون التطبيقية، جامعة حلوان.
4. سليمان، ابراهيم دسوقي عبد الموجود. وآخرون. (2023). الأبعاد التقنية لتكنولوجيا الطباعة ثلاثية الأبعاد في مجال الخزف. مجلة جامعة جنوب الوادي الدولية للعلوم التربوية، مج. 6، ع. 11، 211-250. doi: https://doi.org/10.21608/musi.2023.330547
5. عفيفي، عاطف إبراهيم عنان. وآخرون. (2021). "الابعاد الجمالية والفلسفية للفن الجديد وعلاقتها لاستحداث مشغولة خشبية بتقنية فن الکولاج". مجلة بحوث التربية النوعية، ع. 62، 141-168. https://doi.org/10.21608/mbse.2021.67736.1016
6. عتمان، شيماء أحمد الدسوقى. (2018). "التقنيات المعاصرة ودورها في بناء التصميم ثلاثي الأبعاد". مجلة بحوث التربية النوعية، ع. 55، 331-350. https://doi.org/10.21608/mbse.2018.137692
7. العامري، محمد حمود. (2016). الاتجاهات المعاصرة في التربية الفنية. جامعة السلطان قابوس، كلية الآداب والعلوم الاجتماعية، مجلة الآداب والعلوم الاجتماعية، مج7, ع1، ص 237.، ص. 221-241.
8. المسيري، عبد الوهاب. والتريكي، فني. (2003)، الحداثة وما بعد الحداثة، ط1 دار الفكر ، سورية.
9. محسن، وميض عبد الكريم. (2018). تكنولوجيا التصنيع بالإضافة وانعكاساتها في التصميم الصناعي المعاصر. الجمعية العلمية للمصممين، مجلة التصميم الدولية، المجلد 8، العدد 1، 63-69.
10. المعداوي، غادة دسوقي. وحسين، اسماء عبد المنعم. (2021). الطباعة الرقمية الثلاثية الأبعاد وآثارها على تطوير مهارات التفكير الإبداعي لطلاب كليات الفنون التطبيقية. مجلة الفنون والعلوم الإنسانية، العدد 7. doi: https://doi.org/10.21608/mjas.2021.187601
11. Abdulmajid, M. (2020). Technical Dimensions Of 3d Printing Techniques in The Field of Arts and The Education System. Research Journal Specific Education, Faculty of Specific Education, Mansoura University Issue No. 59. doi: https://dx.doi.org/10.21608/mbse.2020.129497
12. Ahangar, P., & ey.al. (2019). Current Biomedical Applications of 3D Printing and Additive Manufacturing. MDPI, Applied Sciences, Volume 9, Issue 8, pp. 1-23. doi: https://dx.doi.org/10.3390/app9081713
13. Ahn, D.-G. (2021). Directed Energy Deposition (DED) Process: State of the Art. In International Journal of Precision Engineering and Manufacturing-Green Technology (pp. 703–742). doi: https://doi.org/10.1007/s40684-020-00302-7
14. Ballarin, M., & et.al. (2018). Replicas in cultural heritage: 3D printing and the museum experience. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, pp. 55-62. doi: https://dx.doi.org/10.5194/isprs-archives-XLII-2-55-2018
15. Beaman, J., & Traver , A. (1986). Part Generation by Layerwise Selective Sintering. Austin, Texas, United States: University of Texas Austin.
16. Beentjes, T. P. (2019). Casting Rodin’s Thinker: Sand mould casting, the case of the Laren Thinker and conservation treatment innovation. PhD thesis. Netherlands: Faculty of Humanities, University of Amsterdam.
17. Bourgault, Samuelle & et.al. (2023). CoilCAM: Enabling Parametric Design for Clay 3D Printing Through an Action-Oriented Toolpath Programming System. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23). Association for Computing Machinery, New York, NY, USA, Article 264, 1–16. https://doi.org/10.1145/3544548.3580745
18. Buehler, E., & et.al. (2016). Investigating the Implications of 3D Printing in Special Education. ACM Transactions on Accessible Computing, Volume 8, Issue 3, 11. doi: https://doi.org/10.1145/2870640
19. Can, E. (2022, 4 25). Retrieved from EMRE CAN: https://www.emrecanceramic.com/
20. Chavez, L. A., & at.al. (2020). The Influence of Printing Parameters, Post-Processing, and Testing Conditions on the Properties of Binder Jetting Additive Manufactured Functional Ceramics. Ceramics, 3(1), 65-77. doi: https://doi.org/10.3390/ceramics3010008
21. Chen, Z., & et.al. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, Vol. 39(4) 661-687. doi: https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
22. Citarella, R., & Giannella, V. (2021). Additive Manufacturing in Industry. Appl. Sci, 11, 840. doi: https://doi.org/10.3390/app11020840
23. Gibson, I., & et.al. (2015). Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Second Edition ed.). New York, USA: Springer. doi: https://dx.doi.org/10.1007/978-1-4939-2113-3
24. Gonzalez-Gutierrez, J., & et.al. (2018). Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials, 11(5), 840. doi: https://doi.org/10.3390/ma11050840
25. Hafkamp, T., & et.al. (2017). A trade-off analysis of recoating methods for vat photopolymerization of ceramics. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference (pp. 687-711). University of Texas at Austin. Retrieved from https://hdl.handle.net/2152/89873
26. Herpt, O. v. (2023). Olivier van Herpt. Retrieved from Olivier van Herpt: https://oliviervanherpt.com/white-textured-vase/
27. ISO/ASTM 52900. (2015). Additive manufacturing — General principles — Terminology. USA: ASTM Compass.
28. ISO/ASTM 52910. (2018). Additive Manufacturing—Design—Requirements, guidelines and recommendations. . ISO; ASTM.: ISO: Geneva, Switzerland; ASTM: West Conshohocken, PA, USA.
29. Leirmo, T. S., & Martinsen, K. (2019). Evolutionary algorithms in additive manufacturing systems: Discussion of future prospects. Procedia CIRP, 81. doi: https://doi.org/10.1016/j.procir.2019.03.174
30. Malcolm, Dorothea C. (1972). “Design: Elements and Principles”, Davis Pubns, USA.
31. Maloy, R. W., & et.al. (2017). 3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights. Contemporary Issues in Technology and Teacher Education,Vol.: 17, Issue 2, 229 - 249.
32. Menano, L., & et.al. (2019). Integration of 3D Printing in Art Education: A Multidisciplinary Approach. Computers in the Schools, Interdisciplinary Journal of Practice, Theory, and Applied Research, Vol. 36, 222-236. doi: https://doi.org/10.1080/07380569.2019.1643442
33. Nash, K. J. (2018). 3D Printed, Self-glazed Ceramics: An Investigation Inspired by Egyptian Faience. PhD thesis. UK: Faculty of Arts, Creative industries and Education, University of the West of England.
34. Novak, E. (2022). 3D Printing in Education. Routledge. doi: https://dx.doi.org/10.4324/9781138609877-REE81-1
35. Peters, B. (2022). Brian Peters. Retrieved from Brian Peters: https://www.brian-peters.com/screenwalls#/hexscreen
36. Pilipović, A. (2022). Sheet lamination. Polymers for 3D Printing. In Polymers for 3D Printing Methods, Properties, and Characteristics (pp. 127-136). Elsevier Inc. doi: https://doi.org/10.1016/B978-0-12-818311-3.00008-2
37. Pinargote, N. W., & et.al. (2020). Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review. MDPI, Nanomaterials, 10(7), pp. 1-48. doi: https://doi.org/10.3390/nano10071300
38. Redwood, B., & et.al. (2017). The 3D Printing Handbook: Technologies, design and applications. Amsterdam, Netherlands: 3D Hubs B.V.
39. Ron, T., & et.al. (2023). Additive Manufacturing Technologies of High Entropy Alloys (HEA): Review and Prospects. Materials, Volume 16, Issue 6 , 2454. doi: https://doi.org/10.3390/ma16062454
40. Ruscitti, A. F., & et.al. (2020). A review on additive manufacturing of ceramic materials based on extrusion processes of clay pastes. Cerâmica, 66, pp. 354-366. doi: https://dx.doi.org/10.1590/0366-69132020663802918
41. Sames, W., & et.al. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, Volume 61,Issue 5, 315-360. doi: https://doi.org/10.1080/09506608.2015.1116649
42. Scott, C. (2018). The legitimacy of the 3D printer as both artistic tool and artistic medium: assessing the nature and aesthetics of 3D printing artistic output and the effect that 3D-printing may have on the borders of the creative landscape. Master's Thesis. London, UK: Faculty of Art, Design & the Built Environment, Ulster University.
43. Tebianian, M., & et.al. (2023). A Review on the Metal Additive Manufacturing Processes. Preprints, 2023080173. doi: https://doi.org/10.20944/preprints202308.0173.v1
44. Tillinghast, R. C., & et.al. (2014). Integrating three dimensional visualization and additive manufacturing into K-12 classrooms. IEEE Integrated STEM Education Conference. Princeton, NJ, USA: IEEE. doi: https://doi.org/10.1109/ISECon.2014.6891051
45. Tissen, L. N. (2022). 3D Printing and the Art World: Current Developments and Future Perspectives. IntechOpen. doi: https://dx.doi.org/10.5772/intechopen.109107
46. Urhal, P., & et.al. (2019). Robot assisted additive manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 59. doi: https://doi.org/10.1016/j.rcim.2019.05.005
47. Vastamäki, T. (2019). Ceramic technology: how to recognize clay processing. Master thesis. Finland: Faculty of Engineering and Natural Scien
48. Wang, J.-C., & et.al. (2019). Review of additive manufacturing methods for high-performance ceramic materials. The International Journal of Advanced Manufacturing Technology, 103, pp. 2627–2647. doi: https://dx.doi.org/10.1007/s00170-019-03669-3
49. Wiberg, A. (2019). Towards Design Automation for Additive Manufacturing : A Multidisciplinary Optimization approach. Licentiate dissertation, Linköping University Electronic Press. doi: https://doi.org/10.3384/lic.diva-160888
50. Willems, E., & et.al. (2021). Additive manufacturing of zirconia ceramics by material jetting. Journal of the European Ceramic Society, 41(10), 5292-5306. doi: https://doi.org/10.1016/j.jeurceramsoc.2021.04.018
51. Wohlers Report. (2022). Analysis. Trends. Forecasts. 3D Printing and Additive Manufacturing State of the Industry. USA: Wohlers.
52. Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. International Scholarly Research Network ISRN Mechanical Engineering Volume 2012, Article ID 208760, 1-10. doi: https://doi.org/10.5402/2012/208760
53. Yeong, W. Y., & et.al. (2013). State-of-the-art review on selective laser melting of ceramics. In P. J. Bártolo, & et.al., High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping (pp. 65-69). London, UK: CRC Press, Taylor & Francis Group.
54. Zhao, B. (2021). Research on The Application of Ceramic 3D Printing Technology. Journal of Physics: Conference Series, Vol. 1827, pp. 1-7. doi: https://doi.org/10.1088/1742-6596/1827/1/012057
55. Zocca, A., & et.al. (2015). Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. J. Am. Ceram. Soc., Vol. 98(7), pp. 1983–2001. doi: https://doi.org/10.1111/jace.13700
Published
2025-10-17
How to Cite
Dr. Nahed bint Mohammed Musa Turkistani. (2025). The Technical and Aesthetic Dimensions of Additive Manufacturing Technology in The Field of Ceramics. Journal of Arts, Literature, Humanities and Social Sciences, (125), 402-421. https://doi.org/10.33193/JALHSS.125.2025.1546
Section
المقالات